Exercices dirigés – Complément : Identités remarquables (NC6)

Exercice 1 Cet exercice est extrait du livre Myriade 3ème – exercice 17 page 62

Calcul mental

Effectuer les calculs suivants sans calculatrice et en effectuant toutes les étapes intermédiaires mentalement.

- 1. Calculer 39^2 en développant $(40 1)^2$.
- 2. Calculer de la même facon :
- a 992

b. 292

c. 195²

Exercice 2 Cet exercice est extrait du livre Myriade 3ème – exercice 18 page 62

Calcul mental

Effectuer les calculs suivants sans calculatrice et en effectuant toutes les étapes intermédiaires mentalement.

- 1. Calculer 42^2 en développant $(40 + 2)^2$.
- 2. Calculer de la même facon :
- a. 103²
- b. 312

c. 242

Exercice 3 Cet exercice est extrait du livre Myriade 3ème – exercice 19 page 62

Recopier et compléter les égalités suivantes :

a.
$$(x + ...)^2 = ... + ... + 16$$

b.
$$(... - 5)^2 = 100x^2 - ... + ...$$

c.
$$(2x + ...)^2 = ... + 12x + ...$$

d.
$$(x - ...)(x + ...) = ... - 16$$

e.
$$(... + 1)(... - 1) = 49x^2 - ...$$

Exercice 4 Cet exercice est extrait du livre Myriade 3ème – exercice 21 page 62

Développer les expressions suivantes en utilisant les identités remarquables :

a.
$$(x + 6)^2$$

b.
$$(x-3)^2$$

c.
$$(4 + 8x)^2$$

d.
$$(6-2x)^2$$

e.
$$(5 + 9x)(5 - 9x)$$

f.
$$(7 + 4x)(-4x + 7)$$

Exercice 5 Cet exercice est extrait du livre Myriade 3ème – exercice 22 page 62

Factoriser les expressions suivantes en utilisant les identités remarquables :

a.
$$25 - x^2$$

b.
$$x^2 + 2x + 1$$

c.
$$49x^2 - 100$$

d.
$$4x^2 - 12x + 9$$

e.
$$16x^2 - 16$$

$$64 - 48x + 9x^2$$

Exercice 6 Cet exercice est extrait du livre Myriade 3ème – exercice 67 page 67

1. Calculer:

$$55^2 - 53^2$$

a.
$$7^2 - 5^2$$
 b. $55^2 - 53^2$ **c.** $19^2 - 17^2$ **d.** $11^2 - 9^2$

$$7^2$$
 d. $11^2 - 9^2$

2.

La différence des carrés de deux nombres impairs consécutifs est un multiple de 8.

Vrai ou faux ? Donner une preuve.

Exercice 7 Cet exercice est extrait du livre Myriade 3ème – exercice 68 page 67

Prouver que, si on choisit le même nombre de départ, on obtient le même résultat final avec ces deux programmes.

Programme A

- · Choisir un nombre
- Aiouter 1
- Mettre au carré
- Soustraire le carré du nombre de départ

Programme B

- · Choisir un nombre
- Multiplier par 2
- Aiouter 1

Correction ... à regarder une fois que vous avez cherché

Exercice 1

1.
$$39^2 = (40 - 1)^2$$

= $40^2 - 2 \times 40 \times 1 + 1^2$
= $1600 - 80 + 1$
= 1521

2. a.
$$99^2 = (100 - 1)^2$$
 b. $29^2 = (30 - 1)^2$ $= 30^2 - 2 \times 100 \times 1 + 1^2$ $= 30^2 - 2 \times 30 \times 1 + 1^2$ $= 900 - 60 + 1$ $= 9801$ $= 841$

c.
$$195^2 = (200 - 5)^2$$

= $200^2 - 2 \times 200 \times 5 + 5^2$
= $40\ 000 - 2\ 000 + 25$
= $38\ 025$

Exercice 2

1.
$$42^2 = (40 + 2)^2$$

= $40^2 + 2 \times 40 \times 2 + 2^2$
= $1600 + 160 + 4$
= 1764

2. a.
$$103^2 = (100 + 3)^2$$

 $= 100^2 + 2 \times 100 \times 3 + 3^2$
 $= 10\ 000 + 600 + 9$
 $= 10\ 609$
b. $31^2 = (30 + 1)^2$
 $= 30^2 + 2 \times 30 \times 1 + 1^2$
 $= 900 + 60 + 1$
 $= 961$

c.
$$24^2 = (20 + 4)^2$$

= $20^2 + 2 \times 20 \times 4 + 4^2$
= $400 + 160 + 16$
= 576

Exercice 3

a.
$$(x+4)^2 = x^2 + 8x + 16$$

b.
$$(10x - 5)^2 = 100x^2 - 100x + 25$$

$$\mathbf{c.} (2x+3)^2 = 4x^2 + 12x + 9$$

d.
$$(x-4)(x+4) = x^2 - 16$$

e.
$$(7x + 1)(7x - 1) = 49x^2 - 1$$

Exercice 4

a.
$$(x+6)^2 = x^2 + 2 \times x \times 6 + 6^2$$
 b. $(x-3)^2 = x^2 - 2 \times x \times 3 + 3^2$
= $x^2 + 12x + 36$ = $x^2 - 6x + 9$

c.
$$(4 + 8x)^2 = 4^2 + 2 \times 4 \times 8x + (8x)^2$$

= $16 + 64x + 64x^2$
d. $(6 - 2x)^2 = 6^2 - 2 \times 6 \times 2x + (2x)^2$
= $36 - 24x + 4x^2$

e.
$$(5+9x)(5-9x)^2 = 5^2 - (9x)^2$$

= $25-81x$
f. $(7+4x)(-4x+7) = (7+4x)(7-4x)$
= $49-16x^2$

Exercice 5

a.
$$25 - x^2 = 5^2 - x^2$$

 $= (5 - x)(5 + x)$
b. $x^2 + 2x + 1 = x^2 + 2 \times x \times 1 + 1^2$
 $= (x + 1)^2$

c.
$$49x^2 - 100 = (7x)^2 - 10^2$$

= $(7x - 10)(7x + 10)$
d. $4x^2 - 12x + 9 = (2x)^2 - 2 \times 2x \times 3 + 3^2$
= $(2x - 3)^2$

e.
$$16x^2 - 16 = (4x)^2 - 4^2$$

= $(4x - 4)(4x + 4)$
f. $64 - 48x + 9x^2 = 8^2 - 2 \times 8 \times 3x + (3x)^2$
= $(8 - 3x)^2$

Exercice 6

1. a.
$$7^2 - 5^2 = 49 - 25 = 24$$

b.
$$55^2 - 53^2 = (55 - 53) \times (55 + 53) = 2 \times 108 = 216$$

c.
$$19^2 - 17^2 = (19 - 17) \times (19 + 17) = 2 \times 36 = 72$$

d.
$$11^2 - 9^2 = 121 - 81 = 40$$

2. Comme $24 = 8 \times 3$, $216 = 8 \times 27$, $72 = 8 \times 9$ et $40 = 8 \times 5$ alors pour les quatre exemples précédents la propriété est vraie.

Démontrons qu'elle est vraie dans le cas général.

On appelle 2x + 1 un nombre impair quelconque. Le nombre impair consécutif à 2x + 1 est 2x + 3.

Calculons $(2x+3)^2 - (2x+1)^2$

$$(2x+3)^{2} - (2x+1)^{2} = (2x)^{2} + 2 \times 2x \times 3 + 3^{2} - ((2x)^{2} + 2 \times 2x \times 1 + 1^{2})$$

$$= 4x^{2} + 12x + 9 - (4x^{2} + 4x + 1)$$

$$= 4x^{2} + 12x + 9 - 4x^{2} - 4x - 1$$

$$= 8x + 8$$

$$= 8(x+1)$$

Donc $(2x+3)^2 - (2x+1)^2$ est un multiple de 8.

Ainsi la propriété est vraie!

Exercice 7

On appelle *x* un nombre quelconque.

Effectuons les deux programmes avec le nombre x.

Programme A

Programme A Programme B
$$(x+1)^2 - x^2 = x^2 + 2x + 1 - x^2$$

$$= 2x + 1$$
2x + 1

Ainsi on obtient le même résultat final avec les deux programmes.